Methanol Oxidation at Diamond-Supported Pt Nanoparticles: Effect of the Diamond Surface Termination

نویسندگان

  • V. Celorrio
  • D. Plana
  • J. Flórez-Montaño
  • M. G. Montes de Oca
  • A. Moore
  • M. J. Lázaro
  • Miguel Luesma Castán
  • Elena Pastor
چکیده

The electrocatalytic reactivity of Pt nanoparticles supported on high-pressure-high-temperature diamond particles towards adsorbed CO, methanol and formic acid oxidation is investigated employing differential electrochemical mass spectrometry (DEMS). Surface treatment of diamond particles, employed as dimensionally stable electrocatalyst supports, leads to materials with surfaces featuring mainly hydrogen (HDP) or oxygen-based functional groups (ODP). Pt nanoparticles with average diameter below 5 nm were generated by impregnation of the modified diamond particles. The voltammetric responses associated with the oxidation of adsorbed CO appeared unaffected by the surface termination of the diamond support. However, significant differences were observed for methanol oxidation in acid solutions, with Pt/HDP producing smaller current densities than Pt/ODP and a commercially available Pt catalyst (Pt/E-TEK). DEMS studies show higher conversion efficiencies to CO2 for Pt/ODP and Pt/E-TEK, while Pt/HDP exhibited values of approximately 90%. Evidence of formic acid generation as intermediate during methanol oxidation was obtained on all catalysts. Significant differences in the current density associated with the oxidation of formic acid were also observed, with Pt/HDP also providing the lowest current densities. The ensemble of the experimental data suggests that adsorbed HCOOads species is the key intermediate in methanol oxidation, and its subsequent oxidation to CO2 is strongly affected by the average surface termination of the diamond support.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

Enhanced Catalytic Activity of Pt-NdFeO3 Nanoparticles Supported on Polyaniline-Chitosan Composite Towards Methanol Electro-Oxidation Reaction

In this work, NdFeO3 nanoparticles were synthesized through a simple co-precipitation method. The formation of NdFeO3 particles was verified by X-ray powder diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy analysis. Polyaniline and chitosan were employed as proper support for production of metal nanoparticles. Novel Pt...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014